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Abstract: 

Cancer, a dreaded disease with high mortality 

rate, is manifested in the form of genes 

translated into proteome. Extensive research 

has been undertaken to understand the 

mechanism of its onset, progress, and 

malignancy. The fatality of the disease has led 

researchers into developing improved 

diagnosis and targeted medicine. While some 

of the cancers are inherited and some acquired 

due to many known or unknown chemical or 

environmental effects or due to aberrant 

cellular mechanisms. The need to identify the 

genes and proteins remain paramount. The 

discovery of proteins and its PTMs are 

significant in cancer treatment and global and 

targeted proteomics play a very important role 

in these studies. In this study, we have tried to 

relate the importance of proteomic techniques 

and its importance in functionally 

characterizing proteins in various forms and 

stages of cancer along with study of various 

important PTMs. These may eventually help in 

early, better diagnosis and provide knowledge 

for discovery of targeted precision medicines. 
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Introduction: 

Cancer is one of the leading causes of death 
globally, accounting for an estimated 9.6 
million deaths, or one in six deaths, in 2018. It 
is a disease involving translation of genome 

into proteome. The term proteome 
demonstrates the complete arrangement of 
proteins encoded by a genome. Proteomics 
includes the global protein arrangement of a 
cell or life form. It is important to observe the 
level together with the action of proteins [1,2]. 
Proteomic data are helpful in characterizing 
cells and tissues in disease state and 
understanding different natural components. 
The arrangement, interactions, and activity of 
all proteins inside cells and living organism can 
be distinguished by using techniques for 
protein estimation. This field includes 
strategies that can be applied to serum and 
tissue to draw a significant biological data as 
biomarkers to help clinicians and researchers 
in understanding the unique science of their 
interest, for example, a patient with cancer [3]. 

Proteins are complex molecules composed of 
multiple amino acids each of which are unique 
and are the structural units of the living 
organisms. They modify themselves in their 
functions, stability, 3D designs, and are 
considered as the ultimate gene products of 
the greater part of the qualities. Any protein in 
an organism can be modified during 
translation or after translation. The post 
translational modifications (PTMs) of proteins 
manifest themselves in a form of physiological 
response during adverse conditions like 
disease including cancer. PTMs over 450 of 
them in the form of Phosphorylation, 
SUMOlyation, acetylation, glycosylation, 
ubiquitination changes the activity, turnover, 
longevity and interaction among proteins [4]. 
The change in post translational state of 
proteins involved in cell, survival, proliferation 
result in abnormal proliferation of cancer cells, 
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which occur due to activation of oncogenes 
and suppression of tumour suppressor genes 
(TSGs) [5,6]. 

Proteomics includes a vast range of 

techniques, for example, protein expression 

profiling, protein adjustments, interactions 

between proteins, structure of protein, and 

protein activity [7,8]. The outcomes obtained 

from such tasks can be utilized to interpret 

sickness processes, analyses diseases, help in 

drug advancement, and is the reason for 

biological discovery [9-12]. 

The proteomics strategies have become well-

known in malignant growth studies. 

Proteomics-based advancements have 

empowered the identification of promising 

biomarkers and protein articulation 

arrangement that can be utilized to evaluate 

cancer diagnosis, classification of tumour, and 

to recognize promising responders for explicit 

treatments. This data can be acquired from 

several types of samples and be utilized to 

progress disease therapeutics [13-16]. 

Moreover, to comprehend the fundamental 

science of malignant growth, proteomics 

methods have been used to understand how 

the signalling pathways in tumour cells are 

changed and working on how to target 

different pathways for cancer treatment [17-

20]. 

Malignant growth proteomics includes the 

identification and quantitative examination of 

differentially expressed proteins comparative 

with healthy tissue counterparts at various 

phases of infection, from preneoplasia to 

neoplasia. Proteomic advances can likewise be 

utilized to distinguish markers for diagnosis of 

cancer, to observe disease progression, and to 

recognize remedial targets. Proteomics is 

significant in the revelation of biomarkers 

because the proteome reflects both the 

natural genetic program of the cell and the 

effect of its nearby climate. Protein expression 

and activity are dependent upon balance 

through record as well as through 

posttranscriptional and translational events 

[21]. 

Even though proteomics generally managed 

quantitative examination of expression of 

protein, but recently, proteomics has been 

seen to comprehend the structure of proteins. 

Quantitative proteomics endeavours to 

explore the progressions in protein expression 

in various states, for example, in healthy and 

infected tissue or at various phases of the 

infection. This empowers the recognition of 

state-and stage-explicit proteins. Primary 

proteomics endeavours to reveal the 

arrangement of proteins and to unwind and 

identify protein-protein interactions [22]. 

2. Proteomic techniques in cancer diagnosis 

and treatment: 

 Scientific platforms for proteomics have been 

created to distinguish the entire arrangement 

of proteins in living beings and to uncover 

subjective and quantitative protein varieties 

upon assorted natural diversity. Additionally, 

far reaching research on proteins has become 

conceivable by building an amino acid 

sequence database on the arrangement of 

proteins [23]. 

The most interesting part of the proteomics 

field is its capacity to uncover novel biomarkers 

of infection. For instance, malignant tumour 

grows, changes in protein profiles and 

contrasts in protein dispersion both in tissues 

and body fluids, for example, blood can be 

analysed through quantitative examination. 

Proteomics facilitate the simultaneous 

qualitative and quantitative profiling of various 

proteins [24-27] 

Different advances have been created to 

recognise proteomic estimation. Proteomic 

information is very helpful in grouping cells 

and tissues in disease states and 

comprehending different natural processes 

[28]. Scientists recognize the arrangement, 

interactions, and activity of all proteins inside 

the cells and organisms by using strategies for 

the protein estimation. The human proteome  
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data under a range of physiological and 

pathological conditions is measured and 

interpreted by the B/D-HPP (Biology/Disease 

centric). Significant discoveries continue to be 

made from all B/D-HPP teams across the world 

with personalized cancer immunotherapy and 

therapeutic modalities and with PTMs 

orchestrating many outcomes including 

response to therapy [29]. 

2.1. 2D Gel Electrophoresis (2DE): 

Two-dimensional gel electrophoresis (2DE) or 

2D-PAGE is a potential technique for 

proteomics work. It isolates the composite 

mixture of samples utilizing two distinct 

properties of the proteins. In the primary 

dimension, proteins are isolated by the pI value 

and in the second dimension it is isolated by 

the relative molecular weight. Although it was 

depicted way back in 1975 by O'Farrell, its 

relevance and adoptability were improved on 

account of the presentation of immobilized pH 

gradient strips, as they gave great reproducible 

outcomes and handling became simple. At first 

proteins are seen by labelling it with 32P or 35S. 

Presently this has been interchanged by more 

sensitive strategies like SYBRO Ruby. 

Development was made in various phases of 

the 2D-PAGE strategy which can separate up to 

10,000 proteins in a single gel. A 2D-PAGE gel 

picture is caught, and the analysis is done to 

observe the quantity of proteins expressed in a 

specific tissue. The identified proteins are cut 

and digested into fragments. These fragments 

are examined with high‑resolution mass 

spectrometry. The digested protein fragments 

are then matched from known protein 

databases [30]. 

2-dimensional polyacrylamide gel 

electrophoresis (2D-PAGE) and surface-

enhanced laser desorption/ionization with 

time-of-flight mass spectrometry (SELDI-TOF-

MS) have been used for identification of 

tumour markers in bladder cancer [31]. 2D-

DIGE with novel ultra-high sensitive 

fluorescent dyes (CyDye DIGE Fluor saturation 

dye) helps in efficient protein expression 

profiling of laser-micro dissected tissue 

samples. This allows accurate proteomic 

profiling of specific cells in tumour tissues [32]. 

2D-DIGE and MS have revealed new bio 

markers of prostate cancer where secernin-1 

and vinculin-1 were identified as biomarkers 

[33,34]. 

2.2. Isobaric Tag for Relative and Isobaric 

Quantitation ( iTRAQ): 

iTRAQ is a shotgun-based quantitation method 
and is also known as bottom-up approach 
which permits the simultaneous identification 
and relative evaluation of many proteins in up 
to eight different organic samples in a single 
examination. Samples that are digested have 
been labelled with the 8-plex iTRAQ reagents 
and the sample is pooled and ready for MS/MS. 
iTRAQ-based quantitative proteomics is a 
promising methodology for worldwide 
examination of protein expression in small 
quantity of samples. iTRAQ is appropriate for 
biomarker applications as it gives both 
quantitation and multiplexing in a single 
reagent. In cancer biomarker studies, this 
procedure has been simply used to look for 
biomarkers in different types of cancer. 
Involving iTRAQ for urinary cancer biomarkers 
is a new advancing area and has potential for 
future breast cancer biomarker research for 
early diagnosis and monitoring progression 
[35]. 
 
2.3. Protein arrays: 
 
A protein microarray is a piece of nitrocellulose 
covered glass slide on which various particles 
of protein have been bound at independent 
locations [36]. Protein arrays utilizes 
antibodies of known affinity and specifications, 
and they are pressed on the outer layer of 
aptamers. This technique permits the 
perception of the biochemical activity of 
thousands of proteins [37]. Protein microarray 
formats are divided into two principal classes: 
forward phase arrays (FPA) and reverse phase 
arrays (RPAs). In forward-phase arrays (FPAs), 
antibodies are arrayed and probed with cell 
lysates, while in reverse-phase arrays (RPAs), 
cell lysates are arrayed and probed with 
antibodies [38,39].  
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Fig 1: Figure showing different proteomic technologies involved in cancer: i. 2DE, ii. Protein 

array, iii. iTRAQ, iv. LC-MS, adapted: [108,109] 
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Prior information on molecules is expected to 
involve this technique for finding biomarkers. 
One part of the protein array approach that 
recognizes it from DNA microarrays is its 
capacity to distinguish protein isoforms that 
may be basic in identifying infection 
pathogenesis [40]. Discovering these explicit 
biomarkers is clinically helpful in 
demonstrating changes between a normal and 
infected sample. This data is useful to clinicians 
in the diagnosis of infection, as well as in the 
observing the response of patient towards the 
therapy [41]. 
 

 
2.4. LC-MS: 
 
Liquid chromatography-mass spectrometry 

(LC-MS) is presently a unique technique with 

the advancement of electrospray ionization 

(ESI) giving a basic and strong interface. It may 

be applied to a wide arena of biological 

molecules and the utilization of multiple MS 

and stable isotope inside guidelines permits 

exceptionally delicate and exact test to be 

developed, even though some technique 

optimization is needed to limit ion suppression 

effect. Quick examining speeds permit a high 

level of multiplexing, and many mixtures can 

be estimated in a single scientific run. With the 

improvement of more reasonable and reliable 

instruments, LC-MS is beginning to assume a 

significant part in a few areas of clinical 

biochemistry and compete with traditional 

liquid chromatography and different methods 

like immunoassay [42]. 

LC-MS is an important technology for analysis 

in biomedical research. Its flexibility in 

approach to analyse proteome quantitatively 

as well as qualitatively is beyond doubt. Global 

quantitative proteomics for biomarker 

discovery and targeted quantitative 

proteomics for validation of biomarkers are 

two important LC-MS based proteomics 

approaches [43,44]. Label-free and stable 

isotope labelling approaches of global 

proteomics is dependent upon DDA (data 

dependent acquisition). Use of peak area or 

signal intensity can be used for the relative 

protein abundances or ‘reporter ion’ in case of 

isobaric labelling approaches like iTraq and 

tandem mass tags (TMTs). Global proteomics 

has revealed cancer biomarkers like prostrate, 

ovarian cancer and renal cancer [46-48]. iTRAQ 

labelling with SCX (strong cation exchange) is 

the most common method of analysing 

samples by LC-MS [48-50]. 

Targeted proteomics, in global proteomics 

using LC-MS/MS approach many low abundant 

proteins remain to be identified and has data 

reproducibility issues. To overcome this 

shortcoming SRM (selected reaction 

monitoring) also known as MRM (multiple 

reaction monitoring), PRM (parallel reaction 

monitoring) are being used [51,52]. These 

techniques involve ‘spiking-in’ of internal 

standards which are heavy labelled isotopes of 

peptides in the samples and give precise and 

accurate quantification of proteins. High end 

instruments like Triple quad (QQQ) for SRM 

studies, High resolution accurate mass (HR-

AM) for PRM using Q-exactive instrument 

(Thermo corporation, USA) which uses an 

orbitrap mass analyser are used but they are 

limited to small number of proteins quantified 

in each run. PRM has been used for identifying 

aberrant proteins in lung cancer [53]. 

A new modification in technique known as DIA 

(data independent acquisition), it collects all 

the MS/MS scans irrespective of precursor ion 

selection from a full MS scan, it combines both 

the advantages of global proteomics and 

targeted proteomics. SWATH-MS a type of DIA 

provides high dynamic range, reproducibility, 

accuracy, and large-scale quantification [54]. 

This methodology has been used for analysis of 

the N-linked glycoproteome of prostate cancer 

and resulted in the verification of two 

glycoproteins as novel potential biomarkers for 

prostate cancer aggressiveness [55]. 

3. Application of proteomics in cancer: 

Malignant growth is a multifaceted disease 

which results from dysregulated cellular 

signalling that control cellular behaviours, like 
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expansion and apoptosis, brought about by 

genomic, genetic, and epigenetic mutations at 

the cell or tissue levels [56]. 

Oncoproteomics is a part of proteomics which 

deals with the study of proteins and their 

interactions for a malignant growth cell by 

proteomic strategies. There is a trend to apply 

proteomics to encourage a better 

understanding of cancer infection, foster new 

tumor biomarkers for diagnosis of the disease, 

and early detection utilizing proteomic image 

of samples. Oncoproteomics has a promising 

role to alter clinical practices, including 

diagnosis of cancer and screening in view of 

proteomic stages as a complement to 

histopathology, individualized choice of 

therapeutic combinations that focus on the 

cancer-explicit network of protein, real-time 

evaluation of remedial efficacy and toxicity, 

and rational balance of treatment considering 

changes in the cancer protein network related 

with diagnosis and drug resistance [57]. 

3.1. Early detection of cancer: 

Early detection is necessary to control and 

prevent cancer. Biomarkers help in this 

method by giving significant data about the 

status of a cell at a particular point in time. As 

a cell changes from non-infected to neoplastic, 

the changes can be recognized through the 

identification of the suitable biomarkers. 

Biomarker research has enhanced 

development technology like proteomics. 

Transformation of malignant tumour include 

mutations in protein expression with 

successive clonal multiplication of the 

transformed cells. These mutations can be 

checked at the protein level, both qualitatively 

and quantitatively. Protein marks in malignant 

growth give significant data that will help to 

more efficient treatment, prognosis, and 

reaction to therapy [58] 

The capacity to recognise proteins inside 

complex organic fluids, for example, serum, 

plasma, nipple aspirate fluid and urine by 

proteomic innovations has reached a point 

where many species can be recognized fast, 

which brings the more prominent chance of 

distinguishing the ideal biomarkers of cancer 

[59,60] 

3.2. Metastasis: 

The variety of different cancers and the 

metastasis that occurs at the time of malignant 

growth are the major problem towards the 

successful therapeutics [61-63]. Metastasis is 

the most widely recognized aspect of 

malignant cancers; however, the precise 

technique by which the metastatic growth 

takes place is still not clear. Recently, several 

studies on proteomics have been performed to 

uncover the reason for the expanded 

metastasis found in cancer. In one such review, 

utilizing a few Omics like transcriptomics, 

proteomics, and phosphor-proteomics to 

analyse a patient-derived xenograft mouse 

model, TMT labelling analysis uncovered that 

an inflation in stress hormone levels during 

breast cancer development was found to cause 

an increase in the action of the glucocorticoid 

receptor (GR) at metastatic areas thereby 

reducing the rates of survival. It was also found 

that the increased GR action was involved in 

the initiation of various processes in metastasis 

and in the raised expression levels of the kinase 

ROR1, both of which relates to less endurance.  

Scientists identified that expression of Bach1, a 

pro-metastatic transcription factor, through a 

multi-Omics analysis of the transcriptome and 

proteome. In lung adenocarcinoma, the 

deficiency of keap1 and subsequent Nrf2 

initiation induced metastasis through the 

aggregation of Bach1, and this technique was 

related to a decrease in the survival rates of 

patients with lung cancer in a heme oxygenase-

1-dependent way. Nrf2 was displayed to 

reduce the Fbxo22- mediated debasement of 

Bach1 in a heme oxygenase-1 dependent way, 

proposing that inhibition of heme oxygenase-1 

is an efficient therapeutic technique for 

preventing cellular breakdown in the lung 

cancer metastasis [64]. 

3.3. Drug resistance: 
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Malignant growth can reoccur despite 

treatments like chemotherapy and surgery, 

propounding that recurrent cancer consists of 

cells that become resistant to anti-cancerous 

drugs [65,66]. The proteomics approach can be 

utilized to recognize the feature of drug 

resistant cancer cells and find targets that can 

defeat drug resistance that takes place during 

anti-cancer treatment. A few reports have 

shown that cells that endure therapy with anti-

cancer agents in cancers like breast, 

pancreatic, and lung cancer presenting explicit 

protein expression and molecular techniques, 

corresponded with the lower survival rates of 

patients [67-69]. These investigations might 

give the feasibility to amplify the impact of 

chemotherapy utilizing additional drugs that 

control key proteins engaged with drug 

resistance. The features of drug resistant 

cancer cells are related to: stemness in 

development, progression, reoccurrence, 

metastasis [70,71]  

Cancer stem cells (CSCs) derived from breast 

cancer cell lines show resistance towards drug, 

and proteomic analysis of these cells propose 

new explicit markers and therapeutic targets 

for CSCs [72]. Raffel et al. recommended that 

the significance of targeting on leukemic stem 

cells as the justification for the poor clinical 

results after treatment for acute myeloid 

leukaemia is because of chemotherapy-safe 

cells. Hematopoietic stem/progenitor cells and 

leukemic stem cell population investigation 

uncovered that IL3RA and CD99 could be 

markers of leukemic cells [73]. Proteomic  

examination uncovered that the proteins with 

the highest growth in CSCs were related with 

metabolism of carbon, and the inhibition of 

synthesizing fatty acid with reduced viability of 

CSC, suggesting a key metabolic pathway 

controlling CSCs. The action of cancer stem 

cells (or CSCs) resistant to drug interferes with 

the therapeutic process, and tumours in which 

these cells exist are classified as incurable 

cancer that can't be dealt with conventional 

anti-cancer drugs. Hence, for an ideal disease 

treatment, it is important to distinguish explicit 

proteins in these cells and recognize new 

analytic and restorative targets [74

Table 1. Markers used in cancer proteomics: 
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4. Advances of Proteomics in Novel PTM 

Discovery: 

PTM of a protein can restore the entire 
downstream trafficking mutating the activity 
of protein and fate of the cell. Therefore, PTMs 
decide the ideal functionalities of a few 
proteins that are involved with Cancer. 
Phosphorylation is perhaps the most widely 
studied transformations and happens in a 
dynamic and quick, controlling different 
signalling pathways. In general, 

phosphorylation patterns of explicit proteins 
are seen in a few malignancies as proven in 
non-small cell lung cancer in the lungs (NSCLC) 
patient tumour sample, serum sample from 
patients suffering from breast and prostate 
cancer, patient derived intense myeloid 
leukaemia bone marrow cells (AML), human 
pancreatic duct tissue of Pancreatic ductal 
adenocarcinoma patients and renal cell 
carcinoma growths from kidney disease 
patients [83-87] 

 

 

Glycosylation is an extensive and complex form 
of protein post-translational modification 
(PTM), features of various cell surface and 
secreted eukaryotic proteins. Changes in 
protein glycosylation, which occur through 
varying the heterogeneity of glycosylation sites 
or changing the glycan structures of proteins 
on the cell surface and in body fluids, have 
been shown to interact with the advancement 
or progression, or both, of cancer and other 
disease states. Glycoproteins have also 
provided an ideal source for discovering 
biomarkers for disease detection, various 
clinical cancer biomarkers and therapeutic 
targets are glycoproteins including cancer  

 

antigen in gastrointestinal cancer, cluster of 
differentiation 340 (Her2/neu) in breast cancer 
and prostate-specific antigen (PSA) in prostate 
cancer. Differentially expressed glycosylation 
in serum taken from patients with pancreatic 
cancer has also been observed using liquid 
phase separation coupled with mass 
spectrometry (MS) analysis [88]. 

Another very important PTM, Sumoylation 
includes the covalent bonding of a small 
ubiquitin-like modifier (SUMO) to a residue of 
lysine of target proteins through the 
arrangement of an isopeptide bond. In people, 
there are three SUMO isoforms which are 

Fig 3: Post translational modification analyses. adapted [110] 
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joined to proteins through an enzymatic 
cascade like the process of ubiquitination. The 
significance of sumoylation in most cell 
processes includes the cell cycle, 
transcriptional regulation, and localisation of 
nucleus has been recently discovered [89-91]. 
SUMO-interacting motifs (SIMs) and 
recombinant SUMO-binding entities (SUBEs) 
has been adopted for the improvement and 
identification of endogenous poly-SUMO 
proteins [92,92]. SILAC, iTRAQ and LFQ have 
been utilized for quantitation of sumoylation 
[94-96]. Different bioinformatic instruments 
like SUMmOn, SUMOhydro, SumSec, and so 
on, has been presented for sumoylation site 
identification [97-100]. 

Acetylation and methylation are important 
PTMs that play roles in numerous cellular 
processes including cell signalling, metabolic 
pathways and especially, DNA-protein 
interactions. The acetylation of histone 
proteins is a vital process that impacts the 
accessibility of DNA to the transcriptional 
process. The transfer of an acetyl group to the 
α-amino group at the N-end of the protein is an 
irreversible modification, while acetylation at a 
lysine residue is reversible. Acetylation is 
catalysed by acetyltransferases and lysine 
acetylation might be switched by lysine 
deacetylases [103]. Methylation 
predominantly takes place on lysine and 
arginine amino acids. Nevertheless, different 
deposits like histidine, proline, and glutamine 
may be dependent upon methylation. 
Methylation is catalyzed by lysine or arginine 
methyltransferases and switched by 
demethylases [102]. 

The fundamental source of PTM identification 

is mass spectrometry-based proteomics, 

provided by assimilation with interactome and 

transcriptome approaches. The wide range is a 

significant challenge in plasma/serum 

proteomics, making recognizable proof of 

altered proteins rather restricted. This issue 

can be resolved by immunodepleting, but this 

method is less reproducible and requires large 

amount of introductory material to enhance 

modified proteins adequately. Though, these 

challenges lead to few misidentifications and 

altogether prevents examination of the 

specific role of explicit PTMs in oncogenesis. 

Hence, just a small part of PTMs is very much 

approved and relates to a few kinds of 

malignant growth, including glycosylation of 

COX-2 in colorectal cancer [103], citrullination 

of fibronectin during renal malignant growth 

[104], phosphorylation of PKM2 in thyroid 

malignancy [105], and deSUMOylation 

interceded by SENP1 in prostate malignancy 

[106]. 

Discussion: 

Cancer is a disease which has been continually 
researched and many genomics projects have 
been completed and many currently 
underway. The sheer diversity in the various 
cancer types, stages and its outcome make the 
role of proteomics much more important. The 
available genomic data must be integrated 
with the proteomic data which is relatively 
new with the advent of new and robust 
proteomic technologies. The ‘proteogenomic’ 
study will provide a better insight into the 
disease. The proteomic data in a large-scale 
analysis of breast cancer had identified a GPCR 
not identified at mRNA level and highly 
phosphorylated kinases and consequences of 
5q deletion have been studied [107]. The use 
of proteomic technologies like iTRAQ/iCAT and 
the intensive use of LC-MS have led us to 
better understanding of cancer at multiple 
levels involving protein as well as PTMs. The 
discovery of differential protein expression 
and PTMs along with histopathology and 
clinical data serve an important role in 
determining precision medicine and novel 
therapies. Large scale proteomics with 
reduced sample amount and increased 
sensitivity for low abundant proteins and 
peptides aided with high end computational 
data analysis provide hope for combating 
cancer better with early diagnosis and targeted 
treatment. 
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