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Arsenic Pollution: An Insight into its Effect in Plant Productivity and Human Health
Srimoyee Koner1, Ranjana Pal1,*, Siddhartha Dutta2,*
1 Department of Life Sciences, Presidency University, Kolkata – 700073, India.
2 Department of Biotechnology, University of Engineering and Management, Action Area III, B/5, Newtown, Kolkata, West Bengal 700156, India.
*Corresponding:  sid.dutta@gmail.com, ranjana.dbs@presiuniv.ac.in

American Journal of Applied Bio-Technology Research (AJABTR)



Abstract
Arsenic (As), a naturally occurring metalloid, has been a major concern to the environment due to its adverse effects on the plants and human. Arsenic uptake and accumulation in plants has not only impaired the plant processes leading to loss in growth and crop yield but also resulted in toxicity in human due to biomagnification. With decades of research on the effects of arsenic accumulation on plant growth and development and its consequences in human health, we briefly discuss the effects of As on plants and humans. In the first part of the review the principles of uptake of As by plant from soil are discussed. In the second part, the primary mechanism through which the As accumulation affect plant productivity are discussed. The last part describes the effect As has on different human organs. Our mini-review serves to guide the ongoing and future research on the effects As contamination. 
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1.Introduction: 
The earth’s crust consists of arsenic (As) at an average concentration of ∼5 microgram per gram [1]. However, it gets concentrated in some regions of the world where it can act as an environmental contaminant. Its increased level in the environment has become a global concern due to its toxic effect on plant growth and human health  [2-5].  In nature, arsenic (As) is found in combination with inorganic or organic substances to form many compounds [6]. Inorganic arsenic compounds are found in soil sediment and ground water [7]. They are natural or may be formed due to human activity such as mining, mineral debris, glass manufacture, computer chips, wood preservatives, alloying agents and arsenic based pesticides [6, 8, 9]. Fish and shellfish are the main source of organic arsenic compounds [2].
The toxic arsenic level is detrimental to plant growth and productivity as well as affect human and animal health. In plants, the arsenic accumulation leads to perturbation in morphological, biochemical and physiological processes such as root and shoot growth, germination, photosynthesis, carbohydrate metabolism and nitrogen assimilation and an increase in reactive oxygen species (ROS) leading to oxidative stress [10-15].  Due to the ubiquitous presence and its accumulation in edible parts of plants, it is further consumed by the organisms higher in food chain. This biomagnification and transfer of the arsenic through the food chain is one of the modes by which the human body gets contaminated with the heavy metal [6, 16]. Over 100 million people around world are exposed to arsenic in countries like India, Bangladesh, Taiwan, Chile and United States. People are mostly exposed to inorganic arsenic through drinking water and from various foods (in fewer amounts). Arsenic toxicity is due to its mutagenic, teratogenic and carcinogenic effects in human [17]. Usually, arsenic can cause symptoms like nausea, vomiting, diarrhea, dehydration, numbness or tingling of the extremities, muscle cramping, skin disorder, increased risk of diabetes, hypertension, peripheral neuropathy and several type of cancer [2, 18].
This mini-review aims to provide insight into the progresses in our understanding on the effects of the As in the context of plant growth and human health.   
2.Arsenic Uptake by Plants:
Absorption by roots is the major route by which As is taken up by plants. Among the different oxidation state of As, trivalent arsenite As(III), pentavalent arsenate As(V) and methylated As [in the form of monomethylarsenic acid (MMAs) and dimethylarsenic acid (DMAs)] are the three predominant biologically relevant toxic form that are available to the plants. The availability of the different forms of As is primary dependent on the soil pH and temperature as well as microorganisms content of the soil [19, 20]. Although plants lack any dedicated As-specific uptake systems, they are taken up adventitiously by several types of transporters (Figure 1) [21-26].
i) Arsenite uptake. The As(III) is the most toxic arsenic species and is abundantly found in the anerobic environment including submerged soils. As(III) has been shown to be taken into root cells by the aquaporin (AQP) and members of major intrinsic proteins (MIP) [23, 24, 27]. Although aquaporins are small bidirectional channels that allow influx and efflux of water and small neutral molecules, they have been shown to be particularly relevant in the influx of As(III) in the root cells [27, 28]. Members of the nodulin 26-like intrinsic protein (NIP), a subfamily of plant MIP superfamily, have been shown to facilitate As(III) in the root cells [29]. Transgenic studies in Arabidopsis thaliana have identified at least six NIPs, NIP1;1, NIP1;2, NIP3;1, NIP5;1, NIP6;1 and NIP7;1, that are involved in As(III) uptake into the root [23, 24, 26, 30-32]. In rice (Oryza sativa), Lsi1 (also called NIP2;1), a silicon transporter, facilitates As(III) uptake into the root [22, 23]. In the roots, the expression of Lsi1 is high in the distal side of exodermis and endodermis which facilitates entry of As(III). In addition, members of plasma membrane intrinsic protein (PIPs), OsPIP2;4, OsPIP2;6 and OsPIP2;7, are also known to contribute to the As(III) influx in rice. Heterologous expression of OsPIP2;4, OsPIP2;6 and OsPIP2;7 in Arabidopsis resulted in increased influx of As(III) in response to short-term As(III) treatment [33].
ii) Arsenate uptake. As(V) is comparatively less toxic but most prevalent form of arsenic available in the aerobic soil and water. As the chemical structure of As(V) mimics the phosphate ions, it is adventitiously taken up by plant roots through the phosphate (Pi) transporters [34]. Till date numerous members of the Pi transporter 1 (Pht1) family [image: ]have been identified which play active role in the As(V) uptake in plants (Figure 1). Initial studies in Arabidopsis thaliana led to identification of two Pi transporter, AtPht1;1 and AtPht1;4, which has high affinity for As(V) [35]. Several other members of the Pht1 family have been identified in Arabidopsis, such as AtPht1;5, AtPht1;7, AtPht1;8, and AtPht1;9 [36, 37]. The T-DNA mutants and overexpression analysis in rice led to identification of two Pi transporters, OsPht1;4 (OsPT4) and OsPht1;8, which are responsible for As(V) accumulation in root cells [25, 38, 39]. Recently, Pteris vittate, the first arsenic hyperaccumulator identified [40], was found to possess three Pht1 family Pi transporters, PvPht1;1, PvPht1;2 and PvPht1;3, that exhibit As(V) accumulation [41].Figure 1. Schematic representation of As uptake and effects on diverse processes in plants. The white boxes in the lower panel contain the list of major transporters responsible for the As uptake by roots. The different colored boxes in the upper panel represents different effects of As toxicity on plants; growth and development are shown in blue, photosynthesis in brown, Pi associated cellular processes in grey, ROS homeostasis in yellow and metabolism in green.

iii) Methylated arsenic uptake. Methylated arsenic, MMAs and DMAs, exist widely in the environment. Although usage of herbicides and pesticides are responsible for the presence of methylated arsenic species in soil, it is the microorganisms that contribute to the major amount of the available methylated As in the soil [42-44]. At present, limited information is available on the variety of transporters that aids in methylated As uptake. The rate of methylated As absorbed by the roots is comparatively less efficient than that of the As(III) and As(V) [45, 46]. A large-scale hydroponics study using 46 different plants suggested that the uptake of MMA and DMA was significantly less than As(V) absorption [47]. Among the NIP family, NIP2;1 was found to be permeable to the methylated As species in rice root [48]. Aquaporin OsLsi1 is known to carry out the influx of methylated As in roots of rice [45]. A severe decrease in the MMA and DMA uptake was observed in mutants of rice plants lacking the Lsi1 proteins. Additionally, expression of OsLsi1 in Xenopus. laevis oocytes showed significant increase in MMA uptake as compared to control [45]. Moreover, methylated As species have also been shown to take up the entry route as glycerol in rice roots, suggesting an active role of aquaglyceroporins in MMA and DMA uptake [49]. 


3.Effect of Arsenic on Plants:
i) Growth and development. Accumulation of As significantly affect the plant productivity by inhibiting overall plant growth and development thereby effecting the productivity (Figure 1). As toxicity inhibit seed germination and early seedling growth [21, 50]. Stunted growth with fewer side branches and decrease in fresh weight has been reported with increase in accumulation of As in plants [51, 52]. As toxicity during early seedling development also results in stunted root and shoot growth [53, 54]. Exposure of As also alter leaf development, such as reduction in leaf area and size [52, 55]. The As accumulation also reduces the number of tillers and seed weight in rice thereby retarding its yield [56].  
ii) Photosynthesis. Increase in As accumulation severely affect the productivity in plant by causing perturbation in structural and functional units of photosynthetic process. A decrease in chlorophyll concentration due to hinderance in the chlorophyll biosynthesis was observed under As stress [57-59]. A decrease in the level of chlorophyll biosynthesis precursors, such as, protoporphyrin IX, Mg-protoporphyrin, Mg-protoporphyrin methyl ester, and divinyl protochlorophyllide, was observed due increase in As accumulation. Reduction in photosynthetic pigment concentration slower the rate of efficient excitation transfer towards the reaction center II (RCII) thereby resulting in higher non-photochemical quenching (NPQ) by light harvesting complex II (LHCII). Increase in As in plants also effects the heat dissipation capacity in plants [60]. Accumulation of starch was also observed in response to As toxicity, suggesting a inhibition in downstream starch consumption processes [52]. As toxicity also causes perturbation of chloroplast membrane thereby indirectly effecting the photosynthetic processes [61]. A decrease in CO2 fixation and PSII activity was also reported due to As toxicity. A decrease in the protein content of larger subunit of RuBisCO (LSU) in rice leaves was observed due to As toxicity [62].  
iii). Pi associated cellular processes. Since As and Pi are chemically analogues, As gain its entry through the Pi transporter and perturb critical phosphate-dependent cellular processes. This perturbation is primarily via the replacement of Pi by As in biochemical processes [63, 64]. Oxidative phosphorylation and photophosphorylation occurring via electron transport chain (ETC) in mitochondria and chloroplast, respectively, are important reactions requiring Pi for the phosphorylation of ADP to ATP catalyzed by ATP synthases. Under high abundance of available As(V), the mitochondrial ATP synthases incorporate As(V) instead of Pi to generate ADP-As(V). The highly unstable ADP-As(V) undergoes rapid hydrolysis thus setting up a futile reaction cycle during photophosphorylation and oxidative phosphorylation thereby decreasing the ATP production in cell [65]. Since Pi is important for various biochemical processes and a critical component of biomolecules such as DNA and RNA, an As accumulation in cell leads to impairment of DNA/RNA metabolism, phospholipid metabolism, phosphorylation processes [63]. 
iv) Reactive oxygen species (ROS) homeostasis.  The ROS, such as superoxide radicle (O2‾), singlet oxygen (1O2), hydrogen peroxide (H2O2) and hydroxyl radicals (OH), are very critical by-products of the cellular processes that are responsible for plant development and its response to biotic and abiotic stresses [66-68]. The membranes, mitochondria, chloroplast and peroxisomes, contribute to a significant amount of the ROS generated in the cell. In chloroplast, mitochondrial and peroxisomes, the ETC are prominent site of O2‾ production [67, 69, 70] Additionally, a significant amount of O2‾ is also produced in peroxisomes during oxidation of xanthin and hypoxanthine in its matrix [69]. Peroxisomes are also a major house of production for the H2O2. A homeostasis is maintained in ROS generation and scavenging and any imbalance in the ROS concentration due to oxidative stresses can cause severe impairment of various cellular pathways. Arsenic accumulation results in more ROS production by stimulating ROS-producing enzymes, inhibiting the activity of enzymes involved in ETC and inactivation of antioxidative enzymes in the cell [71]. An increase in ROS mounts to an elevated oxidative damage to lipid, proteins, nucleic acids and carbohydrates [66, 72, 73]. Membrane damage and leakage also increase due to oxidation of membrane lipids under As stress. This increase in ROS due to As is known to impair development of seed, embryo, seedling and root development in plants [60, 74]. Disruption of the cell division process due to elevated ROS has been identified as one of the primary effects of As toxicity in plants [75, 76]. Increase in ROS due to As accumulation also triggers a overwhelmed plant defense mechanism which leads to cell death [77]. 
iv) Metabolism. Increased As accumulation has been shown to affect the carbohydrate, protein, lipid metabolism thereby limiting plant growth and development. An accumulation of starch and sugar due to decrease in their metabolism was observed under As toxicity in rice [10]. Inhibition of the starch degrading enzymes, alpha- amylase, beta-amylase and starch phosphorylase, was reported under As stress. Hydrolysis of starch to maltose and glucose and phosphorylation of glucose by hexokinase is critical for the glycolysis process [78]. The As toxicity leads to inhibition of amylolytic activity thereby decreasing the generation of maltose from sucrose. As(V) interfere with the phosphorylation reaction involving breaking down of starch and maltose to generate glucose-1-As(V) which needs to be phosphorylated at the expense of ATP before entering glycolysis thus resulting in a net decrease in energetic yield in cells. 
Lipid peroxidation is one of the major effects of the As stress in plant that leads to cellular and organelle membrane perturbation thereby resulting in increased leakage of electrolytes and other essential components [79]. The lipid peroxidation induced by As accumulation also generate malondialdehyde (MDA), 4-hydroxy-2-nonenal, hydroxyl and keto fatty acids which conjugates with proteins and DNA and impede their related function [80]. As accumulation also causes membrane disruption due to its affinity with sulfhydryl groups in membrane proteins thereby resulting in cell death [81]. The proteolytic activity of proteases and peptidases are also inhibited in seeds, seedlings and cotyledons in As-stressed conditions thereby effecting growth and development [82]. The ROS generated by As toxicity also oxidize amino acids which alters and/or inhibit protein activity which in turn also render proteins susceptible to proteolytic attack [83].  
4.Effect of Arsenic on human body organs:
i) Skin. Exposure to arsenic for a long duration first affects the skin causing pigmentation changes, skin lesions along with hard patches on the palms and soles of feet. Arsenic accumulates in keratin rich tissues such as skin hair and nails due to its affinity for sulfhydryl groups in cysteine-rich proteins [1]. Arsenic level in hair and nail may be used as an indicator of post arsenic exposure. Sometimes single solid transverse white band on nails (Mee’s line) appears as an indication of arsenic exposure. Moreover, in human keratinocyte arsenic is responsible for loss of function in DNA ligase that is involved in DNA repair pathway thereby making these cells more prone to mutations [84]. Thus, long term exposure to arsenic is associated with skin lesions (pigmentation, depigmentation and keratosis) and skin carcinoma (Figure2) [2]. 
ii) Lungs. Inhalation of arsenic dust in mining and smelting industries is often associated with irritation of the mucus membrane. Chronic exposure to arsenic can result in bronchitis, rhinitis, tracheobronchial mucosal and sub-mucosal hemorrhages and chronic cough [2, 85, 86]. The chance of laryngeal (LC) and nasopharyngeal (NPC) cancer development is related to the level of arsenic in blood [87]. Chronic exposure to arsenic compound can cause lung cancer [88]. Arsenic causes polarization to inflammation causing M2 macrophages thereby resulting in lung tumorigenesis [89]
iii) Kidney. Kidney is the major organ through which arsenic excretion takes place. It is also a major site of conversion of pentavalent arsenic into the more toxic and less soluble trivalent arsenic. Accumulation of arsenic in the kidney is responsible for damage to renal capillaries as well as renal tubules due to enhanced ROS production and increase in the levels of proinflammatory cytokines such as tumor necrosis factor alpha as well as interleukin-6 [90]. It is also associated with nephrotoxicity and chronic kidney disease (CKD) resulting in reduced [image: ]glomerular filtration rate. Moreover, albuminuria and proteinuria is also observed due to injury of the renal podocytes [91, 92]. Subsequently, long term exposure to arsenic can cause renal cell carcinoma by influencing the miR-182-5p/HIF2α pathway [93]. Accumulation of arsenic in urinary bladder epithelium is responsible for enhanced cell proliferation thereby resulting in bladder cancer [94, 95]. Figure 2. Schematic representation of effects of As toxicity on human body.

iv) Liver. After absorption of arsenic compounds from food through the gastrointestinal tract, it ﬁrst reaches the liver. In liver, arsenic is detoxified via glutathione, and excreted in bile. It can also be methylated by arsenicmethyltransferase and finally excreted in urine [96]. Liver accumulates arsenic with repeated exposures [96]. Thus, hepatic disease (abnormal liver function, hepatomegaly, hepatoportal sclerosis, liver ﬁbrosis and cirrhosis) is reported as the most common complication of chronic exposures to arsenic [97, 98]. Studies on mouse model of arsenic toxicity have identified liver to be in a state of chronic inflammation [92]. The association between environmental arsenic exposure and human liver cancer has also been repeatedly reported [99]. The mechanism of hepatocarcinogenesis include oxidative DNA damage, acquired tolerance to apoptosis, enhanced cell proliferation, altered DNA methylation and genomic instability [98]. 
v) Brain and Nervous system. Arsenic accumulation in brain has been reported to cause impairment of neurological functioning such as intelligence, learning, short term memory and concentration [100, 101]. Chronic arsenic exposure commonly causes peripheral neuropathy [18]. It involves numbness and parasthesia, diminished sensation of touch, pain, heat, cold and muscle weakness [102]. Arsenic causes reduction in antioxidant enzymes followed by generation of free radical in brain tissue resulting in an increase in lipid peroxidation levels causing neurotoxicity [103]. Since arsenic is capable of crossing the placenta, its concentration is same in cord and maternal blood among pregnant women living in arsenic contaminated area [104]. Once arsenic gains access to the neonate, it may directly affect the central nervous system by crossing the blood-brain-barrier (BBB) [105]. Arsenic causes astrocyte death leading to increased permeability of BBB to toxicants [106]. Prenatal and early postnatal exposure to arsenic have been shown to be associated with reduced brain weight, decreased number of glia and neurons, defects in neural tube and changes in neurotransmitter system resulting in significant spatial memory impairment [107].  
vi) Reproductive organ. In males, inorganic arsenic cause reproductive dysfunction including reduction in the size of testis, accessory sex organ and sperm count which in turn is associated with male infertility [108]. Moreover, the concentrations of luteinizing hormone (LH), follicle stimulating hormone (FSH), and testosterone is found to reduce after exposure to arsenic thereby resulting in impaired spermatogenesis [108]. Studies have shown prostate cancer to be associated with arsenic ingestion [109]. In females, arsenic caused reduction in ovarian weight, mean uterine diameter, decrease in endometrium and myometrium thickness. This was accompanied by lower levels of plasma estradiol, progesterone, FSH and LH in rat model of arsenic toxicity [2, 110]. 
vii) Immune system. People in higher arsenic exposed area have higher risk of certain types of cancer but also higher incidence of opportunistic infections, parasitosis, development of allergies and asthma [86, 111-113]. Arsenic disrupts both the innate and adaptive arm of the immune system thereby resulting in carcinogenesis [114]. It inhibits the function of macrophage and causes change in expression of secreted cytokines such as TNFA, IFNG, IL2, IL10, IL5, and IL4 by activated T lymphocyte cells [115-117]. Arsenic also induced the activation of regulatory T cells which caused immunosuppression [113]. Choudhury et.al. showed high dose of arsenic causes modulation of NF-κB signaling which results in enhanced immune-suppression [118]. Arsenic exposure is also responsible for a state of chronic inflammation thereby increasing the susceptibility of a person to pathogenic infections and cancer development [119].
viii) Blood and cardiovascular system. Long term exposure to arsenic is found to be associated with increased mortality from cardiovascular disease [92]. Anemia and leukopenia is frequently associated with chronic arsenic exposure [120]. Anemia is due to the role of arsenic in disrupting the differentiation of erythrocytes by inhibiting the function of GATA-1 transcription factor [121]. Arsenic causes changes in the platelet cytoskeleton network which makes them more prone to activating stimuli thereby contributing to enhanced thrombosis [122]. Increased platelet aggregation and reduction in fibrinolysis results in increased risk of atherosclerosis on chronic exposure to arsenic [123]. Furthermore, arsenic exposed individuals show high prevalence of ischemic heart disease, cardiac arrhythmias and hypertrophy of the ventricular muscles [124, 125]. 
ix) Mechanism of action. Arsenic exposure increases the production of reactive oxygen species (ROS). Reactive oxygen and nitrogen species such as superoxide anion, peroxyl radical, hydrogen peroxide, hydroxyl radical, and nitric oxide are responsible for causing mutation in the genome of an organism which may lead to carcinogenesis [125]. Studies suggest that arsenic causes morphological changes in mitochondria which is the source of increased intracellular ROS [125]. It also causes impairment in the DNA repair pathway enzymes such as XPC thereby enhancing the observed genotoxic effect of arsenic [126, 127]. The activity of E2F1 transcription factor, that regulate cell cycle progression, is inhibited by arsenic via phosphorylation of retinoblastoma protein [128]. Arsenic can lead to DNA hypermethylation thereby lowering gene expression [129]. Arsenic can induce apoptosis by modulating LncRNA MEG3 expression [130]. 


[bookmark: _GoBack]5.Conclusion and Future Perspective: 
In India, many states have ground water arsenic contamination due to which crop productivity is reduced and there is a serious hazardous effect on human health. The As accumulation not only impair growth and development in plants but also is a major cause of biomagnification in humans. Thus, the aim to reduce As accumulation in plants will serve the dual-purpose of sustaining the crop productivity and act as a solution to the As biomagnification concern in humans. One of the major biotechnological approach is modulation in the abundance of As associated transporters (including both influx and efflux transporters) and metabolic processes. Overexpression of the Pi transporter which has higher preference of Pi over As will help in uninterrupted supply of the Pi required for growth and development in plants without elevating the As concentration [131]. In a reverse approach, downregulation of Pi transporter which have higher affinity for As has also been shown to result in lesser As accumulation and enhanced As stress tolerance in crop plants [25]. Ectopic expression of the proteins responsible for As efflux from cells are also widely used technique to achieve As tolerance [132].  Manipulation of As metabolism to generate more of the volatile form of As is also a desirable approach to reduce As accumulation in crop plants  [133-135]. Overexpression of AsIII S-adenosylmethionine methyltransferase (ArsM), an enzyme responsible for As biomethylation, in rice led to lesser accumulation of arsenic. Since the microorganism population of the soil and groundwater control the nutrient availability of the plants, bio-augmentation and bio-stimulation approaches are also widely implemented for reducing the As accumulation in the environment [136-138]. Use of large-scale genome analysis tools to identify a greater number of genes responsible for As tolerance and exploiting new gene editing tools such as CRISPR-Cas9 may prove beneficiary in the crop biotechnology field in reducing the As accumulation problem. In humans, dietary nutrients such as proteins, iron, zinc and vitamins result in increased urinary excretion of arsenic thereby reducing the toxic effects of the heavy metal. Thus, individuals residing in the arsenic endemic areas should maintain a healthy nutritional status in order to reduce the toxic effects associated with arsenic-contaminated food and water. Simultaneous multifaceted approaches, including public awareness to reduce As contamination by human and ecological means to decontaminate the environment is also required to reduce As toxicity. 
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